PseudoAugment: Learning to Use Unlabeled Data for Data Augmentation in Point Clouds
نویسندگان
چکیده
Data augmentation is an important technique to improve data efficiency and save labeling cost for 3D detection in point clouds. Yet, existing policies have so far been designed only utilize labeled data, which limits the diversity. In this paper, we recognize that pseudo are complementary, thus propose leverage unlabeled enrich training data. particular, design three novel pseudo-label based (PseudoAugments) fuse both pseudo-labeled scenes, including frames (PseudoFrame), objecta (PseudoBBox), background (PseudoBackground). PseudoAugments outperforms by mitigating errors generating diverse fused scenes. We demonstrate generalize across point-based voxel-based architectures, different model capacity KITTI Waymo Open Dataset. To alleviate of hyperparameter tuning iterative labeling, develop a population-based framework detection, named AutoPseudoAugment. Unlike previous works perform pseudo-labeling offline, our performs one shot reduce computational cost. Experimental results on large-scale Dataset show method state-of-the-art auto (PPBA) self-training (pseudo labeling). AutoPseudoAugment about 3X 2X efficient vehicle pedestrian tasks compared prior arts. Notably, nearly matches full dataset results, with just 10% run segments task.
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولLearning with Unlabeled Data
of thesis entitled: Learning with Unlabeled Data Submitted by XU, Zenglin for the degree of Doctor of Philosophy at The Chinese University of Hong Kong in January 2009 We consider the problem of learning from both labeled and unlabeled data through the analysis on the quality of the unlabeled data. Usually, learning from both labeled and unlabeled data is regarded as semi-supervised learning, w...
متن کاملUse of Unlabeled Data in Supervised Machine Learning
In many machine learning problem domains large amounts of data are available but the cost of correctly labeling it prohibits its use. This paper presents a short overview of methods for using a small set of labeled data together with a large supplementary unlabeled dataset in order to learn a better hypothesis than just by using the labeled information.
متن کاملLearning Classification with Unlabeled Data
One of the advantages of supervised learning is that the final error metric is available during training. For classifiers, the algorithm can directly reduce the number of misclassifications on the training set. Unfortunately, when modeling human learning or constructing classifiers for autonomous robots, supervisory labels are often not available or too expensive. In this paper we show that we ...
متن کاملUsing Unlabeled Data for Supervised Learning
Many classification problems have the property that the only costly part of obtaining examples is the class label. This paper suggests a simple method for using distribution information contained in unlabeled examples to augment labeled examples in a supervised training framework. Empirical tests show that the technique described in this paper can significantly improve the accuracy of a supervi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2022
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-031-19821-2_32